Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China.

Identifieur interne : 000716 ( Main/Exploration ); précédent : 000715; suivant : 000717

Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China.

Auteurs : Yan Wu [République populaire de Chine] ; Qiong Wang [République populaire de Chine] ; Huimei Wang [République populaire de Chine] ; Wenjie Wang [République populaire de Chine] ; Shijie Han [République populaire de Chine]

Source :

RBID : pubmed:30899268

Abstract

The influence of shelterbelt afforestation on soils in different-depth profiles and possible interaction with climatic conditions is important for evaluating ecological effects of large-scale afforestation programs. In the Songnen Plain, northeastern China, 720 soil samples were collected from five different soil layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) in shelterbelt poplar forests and neighboring farmlands. Soil physiochemical properties [pH, electrical conductivity (EC), soil porosity, soil moisture and bulk density], soil carbon and nutrients [soil organic carbon (SOC), N, alkaline-hydrolyzed N, P, available P, K and available K], forest characteristics [tree height, diameter at breast height (DBH), and density], climatic conditions [mean annual temperature (MAT), mean annual precipitation (MAP), and aridity index (ARID)], and soil texture (percentage of silt, clay, and sand) were measured. We found that the effects of shelterbelt afforestation on bulk density, porosity, available K, and total P were observed up to 100 cm deep; while the changes in available K and P were several-fold higher in the 0-20 cm soil layer than that in deeper layers (p < 0.05). For other parameters (soil pH and EC), shelterbelt-influences were mainly observed in surface soils, e.g., EC was 14.7% lower in shelterbelt plantations than that in farmlands in the 0-20 cm layer, about 2.5-3.5-fold higher than 60-100 cm soil inclusion. For soil moisture, shelterbelt afforestation decreased soil water by 7.3-8.7% in deep soils (p < 0.05), while no significant change was in 0-20 cm soil. For SOC and N, no significant differences between shelterbelt and farmlands were found in all five-depth soil profiles. Large inter-site variations were found for all shelterbelt-induced soil changes (p < 0.05) except for total K in the 0-20 cm layer. MAT and silt content provided the greatest explanation powers for inter-site variations in shelterbelt-induced soil properties changes. However, in deeper soils, water (ARID and MAP) explained more of the variation than that in surface soils. Therefore, shelterbelt afforestation in northeastern China could affect aspects of soil properties down to 100 cm deep, with inter-site variations mainly controlled by climate and soil texture, and greater contribution from water characteristics in deeper soils.

DOI: 10.3389/fpls.2019.00220
PubMed: 30899268
PubMed Central: PMC6416468


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China.</title>
<author>
<name sortKey="Wu, Yan" sort="Wu, Yan" uniqKey="Wu Y" first="Yan" last="Wu">Yan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Engineering, Da Qing Normal University, Daqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Biological Engineering, Da Qing Normal University, Daqing</wicri:regionArea>
<wicri:noRegion>Daqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qiong" sort="Wang, Qiong" uniqKey="Wang Q" first="Qiong" last="Wang">Qiong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Huimei" sort="Wang, Huimei" uniqKey="Wang H" first="Huimei" last="Wang">Huimei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wenjie" sort="Wang, Wenjie" uniqKey="Wang W" first="Wenjie" last="Wang">Wenjie Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Shijie" sort="Han, Shijie" uniqKey="Han S" first="Shijie" last="Han">Shijie Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Henan University, Kaifeng, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Life Science, Henan University, Kaifeng</wicri:regionArea>
<wicri:noRegion>Kaifeng</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30899268</idno>
<idno type="pmid">30899268</idno>
<idno type="doi">10.3389/fpls.2019.00220</idno>
<idno type="pmc">PMC6416468</idno>
<idno type="wicri:Area/Main/Corpus">000981</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000981</idno>
<idno type="wicri:Area/Main/Curation">000981</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000981</idno>
<idno type="wicri:Area/Main/Exploration">000981</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China.</title>
<author>
<name sortKey="Wu, Yan" sort="Wu, Yan" uniqKey="Wu Y" first="Yan" last="Wu">Yan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Engineering, Da Qing Normal University, Daqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Biological Engineering, Da Qing Normal University, Daqing</wicri:regionArea>
<wicri:noRegion>Daqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qiong" sort="Wang, Qiong" uniqKey="Wang Q" first="Qiong" last="Wang">Qiong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Huimei" sort="Wang, Huimei" uniqKey="Wang H" first="Huimei" last="Wang">Huimei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wenjie" sort="Wang, Wenjie" uniqKey="Wang W" first="Wenjie" last="Wang">Wenjie Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Shijie" sort="Han, Shijie" uniqKey="Han S" first="Shijie" last="Han">Shijie Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Henan University, Kaifeng, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Life Science, Henan University, Kaifeng</wicri:regionArea>
<wicri:noRegion>Kaifeng</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influence of shelterbelt afforestation on soils in different-depth profiles and possible interaction with climatic conditions is important for evaluating ecological effects of large-scale afforestation programs. In the Songnen Plain, northeastern China, 720 soil samples were collected from five different soil layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) in shelterbelt poplar forests and neighboring farmlands. Soil physiochemical properties [pH, electrical conductivity (EC), soil porosity, soil moisture and bulk density], soil carbon and nutrients [soil organic carbon (SOC), N, alkaline-hydrolyzed N, P, available P, K and available K], forest characteristics [tree height, diameter at breast height (DBH), and density], climatic conditions [mean annual temperature (MAT), mean annual precipitation (MAP), and aridity index (ARID)], and soil texture (percentage of silt, clay, and sand) were measured. We found that the effects of shelterbelt afforestation on bulk density, porosity, available K, and total P were observed up to 100 cm deep; while the changes in available K and P were several-fold higher in the 0-20 cm soil layer than that in deeper layers (
<i>p</i>
< 0.05). For other parameters (soil pH and EC), shelterbelt-influences were mainly observed in surface soils, e.g., EC was 14.7% lower in shelterbelt plantations than that in farmlands in the 0-20 cm layer, about 2.5-3.5-fold higher than 60-100 cm soil inclusion. For soil moisture, shelterbelt afforestation decreased soil water by 7.3-8.7% in deep soils (
<i>p</i>
< 0.05), while no significant change was in 0-20 cm soil. For SOC and N, no significant differences between shelterbelt and farmlands were found in all five-depth soil profiles. Large inter-site variations were found for all shelterbelt-induced soil changes (
<i>p</i>
< 0.05) except for total K in the 0-20 cm layer. MAT and silt content provided the greatest explanation powers for inter-site variations in shelterbelt-induced soil properties changes. However, in deeper soils, water (ARID and MAP) explained more of the variation than that in surface soils. Therefore, shelterbelt afforestation in northeastern China could affect aspects of soil properties down to 100 cm deep, with inter-site variations mainly controlled by climate and soil texture, and greater contribution from water characteristics in deeper soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30899268</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China.</ArticleTitle>
<Pagination>
<MedlinePgn>220</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.00220</ELocationID>
<Abstract>
<AbstractText>The influence of shelterbelt afforestation on soils in different-depth profiles and possible interaction with climatic conditions is important for evaluating ecological effects of large-scale afforestation programs. In the Songnen Plain, northeastern China, 720 soil samples were collected from five different soil layers (0-20, 20-40, 40-60, 60-80, and 80-100 cm) in shelterbelt poplar forests and neighboring farmlands. Soil physiochemical properties [pH, electrical conductivity (EC), soil porosity, soil moisture and bulk density], soil carbon and nutrients [soil organic carbon (SOC), N, alkaline-hydrolyzed N, P, available P, K and available K], forest characteristics [tree height, diameter at breast height (DBH), and density], climatic conditions [mean annual temperature (MAT), mean annual precipitation (MAP), and aridity index (ARID)], and soil texture (percentage of silt, clay, and sand) were measured. We found that the effects of shelterbelt afforestation on bulk density, porosity, available K, and total P were observed up to 100 cm deep; while the changes in available K and P were several-fold higher in the 0-20 cm soil layer than that in deeper layers (
<i>p</i>
< 0.05). For other parameters (soil pH and EC), shelterbelt-influences were mainly observed in surface soils, e.g., EC was 14.7% lower in shelterbelt plantations than that in farmlands in the 0-20 cm layer, about 2.5-3.5-fold higher than 60-100 cm soil inclusion. For soil moisture, shelterbelt afforestation decreased soil water by 7.3-8.7% in deep soils (
<i>p</i>
< 0.05), while no significant change was in 0-20 cm soil. For SOC and N, no significant differences between shelterbelt and farmlands were found in all five-depth soil profiles. Large inter-site variations were found for all shelterbelt-induced soil changes (
<i>p</i>
< 0.05) except for total K in the 0-20 cm layer. MAT and silt content provided the greatest explanation powers for inter-site variations in shelterbelt-induced soil properties changes. However, in deeper soils, water (ARID and MAP) explained more of the variation than that in surface soils. Therefore, shelterbelt afforestation in northeastern China could affect aspects of soil properties down to 100 cm deep, with inter-site variations mainly controlled by climate and soil texture, and greater contribution from water characteristics in deeper soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Engineering, Da Qing Normal University, Daqing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qiong</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Huimei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wenjie</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Shijie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Henan University, Kaifeng, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">analysis of causes</Keyword>
<Keyword MajorTopicYN="N">deep-layer soil</Keyword>
<Keyword MajorTopicYN="N">farmlands</Keyword>
<Keyword MajorTopicYN="N">poplar shelterbelt</Keyword>
<Keyword MajorTopicYN="N">soil properties change</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30899268</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.00220</ArticleId>
<ArticleId IdType="pmc">PMC6416468</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Nov 8;450(7167):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2009 Dec;19(8):2228-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20014590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e32054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22412854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Feb 11;4:4062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24513580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Apr;4(7):1039-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24772281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2014;2014:160403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24955385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 02;10(10):e0139623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26430896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Aug 11;11(8):e0160776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27513001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Dec 22;540(7634):567-569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27871089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Oct 9;7(1):12829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Oct 11;7(1):13003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29021579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Feb 6;9(1):520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29410472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2018 May 09;4(5):eaar4182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29750196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Jul;559(7713):193-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29995865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Aug 16;6:e5450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30128206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Oct 29;6:e5825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30397545</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wu, Yan" sort="Wu, Yan" uniqKey="Wu Y" first="Yan" last="Wu">Yan Wu</name>
</noRegion>
<name sortKey="Han, Shijie" sort="Han, Shijie" uniqKey="Han S" first="Shijie" last="Han">Shijie Han</name>
<name sortKey="Wang, Huimei" sort="Wang, Huimei" uniqKey="Wang H" first="Huimei" last="Wang">Huimei Wang</name>
<name sortKey="Wang, Qiong" sort="Wang, Qiong" uniqKey="Wang Q" first="Qiong" last="Wang">Qiong Wang</name>
<name sortKey="Wang, Wenjie" sort="Wang, Wenjie" uniqKey="Wang W" first="Wenjie" last="Wang">Wenjie Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000716 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000716 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30899268
   |texte=   Shelterbelt Poplar Forests Induced Soil Changes in Deep Soil Profiles and Climates Contributed Their Inter-site Variations in Dryland Regions, Northeastern China.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30899268" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020